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An experimental investigation of steep, high-frequency gravity waves (- 4 to 5 Hz) and 
the parasitic capillary waves they generate is reported. Spatial, as well as temporal, 
non-intrusive surface measurements are made using a new technique. This technique 
employs cylindrical lenses to magnify the vertical dimension in conjunction with an 
intensified, high-speed imaging system, facilitating the measurement of the disparate 
scales with a vertical surface-elevation resolution on the order of 10 pm. Thus, high- 
frequency parasitic capillary waves and the underlying gravity wave are measured 
simultaneously and accurately in space and time. Time series of spatial surface- 
elevation measurements are presented. It is shown that the location of the capillary 
waves is quasi-stationary in a coordinate system moving with the phase speed of the 
underlying gravity wave. Amplitudes and wavenumbers of the capillaries are 
modulated in space; however, they do not propagate with respect to the gravity wave. 
As capillary amplitudes are seen to decrease significantly and then increase again in a 
recurrence-like phenomenon, it is conjectured that resonance mechanisms are present. 
Measured surface profiles are compared to the theories of Longuet-Higgins (1963) and 
Crapper (1970) and the exact, two-dimensional numerical formulation of Schwartz & 
Vanden-Broeck (1979). Significant discrepancies are found between experimental and 
theoretical wavetrains in both amplitude and wavenumber. The theoretical predictions 
of the capillary wave amplitudes are much smaller than the measured amplitudes when 
the measured phase speed, amplitude, and wavelength of the gravity wave are used in 
the Longuet-Higgins model. In addition, this theory predicts larger wavenumbers of 
the capillaries as compared to experiments. The Crapper model predicts the correct 
order-of-magnitude capillary wave amplitude on the forward face of the gravity wave, 
but predicts larger amplitudes on the leeward face in comparison to the experiments. 
Also, it predicts larger capillary wavenumbers than are experimentally determined. 
Comparison of the measured profiles to multiple solutions of the stationary, symmetric, 
periodic solutions determined using the Schwartz & Vanden-Broeck numerical 
formulation show similar discrepancies. In particular, the assumed symmetry of the 
waveform about crest and trough in the numerical model precludes a positive 
comparison with the experiments, whose underlying waves exhibit significantly larger 
capillaries on their forward face than on their leeward face. Also, the apriori unknown 
multiplicity of numerical solutions for the same dimensionless surface tension and 
steepness parameters complicates comparison. Finally, using the temporal periodicity 
of the wave field, composite images of several successive wavelengths are constructed 
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from which potential energy and surface energy are calculated as a function of distance 
downstream. 

1. Introduction 
Steep gravity waves are known to generate capillary waves on their forward faces. 

This is apparently due to the large curvature along the crests where surface tension 
becomes locally important. These waves may be referred to as parasitic capillary waves. 
Parasitic capillary waves are important for several reasons, three of which are: (ij as 
a mechanism for extracting energy from the primary gravity wave through viscous 
energy dissipation at short scales, (ii) as a mechanism for generating surface roughness 
at wavelengths which scatter electromagnetic radiation (and thus are germane to the 
interpretation of remotely sensed information), and (iii) as a source of near-surface 
vorticity as shown by Longuet-Higgins (1992). Surprisingly little information is 
available on these waves of disparate scales, presumably due to the analytical/ 
numerical, as well as experimental, difficulties involved. 

Analytical/numerical solutions of the generation of parasitic capillary waves by 
steep gravity waves have been formulated by Longuet-Higgins (1963), Crapper (1970j, 
Schwartz & Vanden-Broeck (1979), Chen & Saffman (1979, 1980, 1985), Ruvinsky & 
Freidman (1981, 1985), and Ruvinsky, Feldstein & Freidman (1991). Longuet-Higgins 
(1992) has discussed the generation of near-surface vorticity by the steep gravity wave 
and the contribution to this vorticity by the capillary waves. Experimental 
investigations have been carried out by Cox (1958), Miller (1972), Chang, Wagner & 
Yuen (1978), and Yermakov et al. (1986); however, these investigators reported 
surface slope as a function of time, only. Neither surface-elevation measurements, nor 
phase-speed measurements, nor spatial-dissipation measurements of the wavetrains 
were presented. Herein, using a newly developed system, extremely accurate 
measurements of surface elevation are presented. Resolution and accuracy of the 
vertical measurements are shown to be on the order of 10pm. Temporal series of 
spatial surface elevation are presented for cyclic frequencies of 4.21 and 5.26 Hz, two 
of the three frequencies reported in Chang et a/. (1978). (Spatial series of temporal 
surface elevation are also available.) From these data, phase speeds are calculated. In 
addition, potential energy and surface energy as a function of distance downstream is 
given. Significant differences are shown to exist between theory and experiment. 

In 92, the theories of Longuet-Higgins and of Crapper are reviewed. (Presumably, 
lacking experimental results of surface elevation with which to compare, neither 
theorist presented surface profiles. Thus, their equations are presented. The 
corresponding surface profiles are shown and discussed in 94. j Also, the formulation 
of Schwartz & Vanden-Broeck is presented. Section 3 discusses the measurement 
technique, its accuracy, and the laboratory facility. Experimental results are presented 
and compared to the theoretical/numerical solutions in 94. Conclusions are given in 
§5 .  

2. Analytkal/numerical theories 
2.1. Theory of Longuet-Higgins (1963) 

A brief discussion of the theory of Longuet-Higgins (1963) is now given. (The 
equations presented are limited to those solved to obtain the surface profile.) The 
theory is based on a perturbation technique which assumes that at zeroth order a 
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nonlinear gravity wave is present with waveform given by the solution of Davies (1951) 
as 

z0 = xo+iyo = - (on the free surface), (1) 

where x = q5 + i$ ($ = 0, on the free surface), 

m = i g / C 3 ,  1 < I < ;, o < A < 1. 

At first order, the capillary wavetrain is given by the expression 

(on the free surface), 

where 

with e'o = (1 - 2A cos m$ + A2)i, 

m8 and 8=1-A. a r 0  

ag 3(S2 + m2$2) ' 
-=-  

Values for b, a7,/a$, and a are near-crest approximations as given by Longuet- 
Higgins. In addition, to model viscous dissipation, the imaginary part of the solution 
to (2)  is multiplied by 

y ,  = y1 ( 1 -exp (-2'' ___ 1 (c eTo)2 d$)). 

Here, the subscripts refer to the zeroth- and first-order solutions; z is a complex 
coordinate with x and y representing the horizontal and vertical coordinates, 
respectively. The wave profile is obtained by superposition of z,, and zl. Also, x is 
positive to the right and y is positive directed upward from the water surface; x is the 
complex potential with 4 the velocity potential and $ the stream function. The phase 
speed of the gravity wave is denoted by c while A is a parameter related to the wave 
amplitude of the gravity wave. A = 1 corresponds to gravity-wave breaking. The 
parameter I corresponds to the wavelength of the gravity wave, g is the acceleration due 
to gravity, p is the mass density, v is the kinematic viscosity, and T is the surface 
tension. Equations (1) and (2)  are integrated to obtain the gravity wave profile and the 
capillary wavetrain, respectively. The sum of these waves yields the water surface. 
Solutions are given and compared to experiments in $4. 

2.2. Theory of Crapper (1970) 
The theory of Crapper (1970) used the same underlying nonlinear gravity wavetrain as 
Longuet-Higgins at zeroth order; however, the solution at first order incorporated the 
exact solution of Crapper (1957) for the capillary waves. A nonlinear, ordinary 



600 M .  Perlin, H.  Lin and C.-L. Ting 

differential energy equation was given in terms of C, an integration constant, as 
follows : 

Here, U and 8 are the surface-particle velocity magnitude and direction, respectively, 
in the gravity wave, and k is a non-dimensional capillary wavenumber. These are 
defined as 

aU/a$ is given by au - cmA(cos mq5 - A )  
a+ 3(1 -2Acosm$+A2)%' 
- _ -  

The solution of (3) along the curvilinear coordinate, s, where ds is the length element 
along the zeroth-order solution of the free surface, gives the capillary wavetrain. Since 
k is a continuous function of 4, the solution of the above equations is difficult. To 
simplify the solution, the number of capillary waves along the gravity wave profile is 
determined (as a function of q5) using the following equation: 

Between integer values of n, then, using the appropriate k for each capillary 
wavelength, ( 3 )  is solved using Euler's method. 

2.3. The numerical theory of Schwartz & Vanden-Broeck (1979) 
A review of the numerical treatment of the exact, two-dimensional water wave problem 
including surface tension and gravity as given by Schwartz & Vanden-Broeck is 
presented. They assumed a two-dimensional, infinite-depth fluid which is inviscid, 
incompressible, and of constant density. In addition, the assumption of irrotational 
flow is made. The waves are assumed of permanent-form and symmetric about a 
vertical axis through crest and trough. With these assumptions, a complex physical 
coordinate, z = x + iy, a complex potential, x = 4 + i+, and a complex velocity, q = 
dX/dz = u - iu are defined. In a system of coordinates moving at the constant phase 
speed, c, the kinematic condition is identically satisfied while the dynamic condition on 
the free surface is 

(4) 
where the variables are defined as before, the asterisk represents the complex conjugate, 
and R is the surface radius of curvature with positive defined with centre in the fluid. 
Three dimensionless parameters are chosen : a dimensionless surface tension parameter 
(following Wilton's original work), K = (k2T)/(pg) ; a dimensionless wave-speed 
parameter, p = (k/g) c2; and a dimensionless measure of wave steepness, 6 = 
(y (0)  --y(n/k))/(2n/k), whose choice is unclear for multi-crested steep waves. ( K  = 
1 /n represents nth-harmonic resonance for the weakly nonlinear theory.) Using the 
first two dimensionless parameters, (4) becomes 

&q* +gy + T/pR = +c2, 

;&j* + j +  K / R  = &, ( 5 )  
where the circumflexes denote dimensionless variables. Next the flow is separated into 
a uniform part and a wave part using the transformation 2 = p& + 2. Periodicity is 
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imposed using the transformation 2 = + i$ = i,ui log c, where [ = r eis and r = 1 is the 
surface. Exploiting the assumed symmetry of the permanent-form wave, the surface 
condition is expressed in terms of the unknown function, z” = 2(.f(O),p(O)), as 

,,p,,-p,a” 
,u 2 P + + p ‘ 2  p, (2’2  +f’”>” 
f+L(--I)+-( 1 ) = 0, 

where the primes denote differentiation with respect to 8. Schwartz & Vanden-Broeck 
fix (e, K )  and seek solutions in terms of ,u. A Newton-Raphson technique is used to 
solve the set of nonlinear algebraic equations obtained by finite differencing (6). 

In this paper multiple solutions are found as in Schwartz & Vanden-Broeck. That is, 
for given values of (e, K) ,  several numerical solutions are found with different values of 
the speed parameter, ,u. In the results presented herein, sixty points are used to define 
the surface along a half-wavelength with double precision, 32-bit arithmetic, and a 
convergence criterion of for each point. The wave profile determined numerically 
in a straightforward manner beginning with an initially sinusoidal profile is termed the 
‘ naturally ’ occurring waveform by Schwartz & Vanden-Broeck and this terminology 
is used herein. One straightforward technique and one ‘bootstrap’ technique similar to 
that described by Schwartz & Vanden-Broeck are used to search for multiple solutions. 
The bootstrap search technique is employed for the 5.26 Hz wavetrain, only. (For the 
4.21 Hz experiments, the straightforward technique is used and only the naturally 
occurring solution is presented.) The first technique begins with a sinusoidal input with 
fixed values of (6, K )  = (0.06727,0.06275) as determined from the experiments and an 
initial guess of ,u varying from 1.0 to 2.0 in 0.01 increments. Three solutions are 
determined. (See $4 for a discussion of the three profiles determined.) 

Next, the bootstrap technique is employed as none of these three solutions had an 
appropriate number of short waves present nor did they have a phase-speed parameter 
corresponding to that measured experimentally. Since the experimental wavetrain had 
about seven short waves present on its half-wavelength, K = 0.071 43, the numerical 
simulation begins with this initial value of K.  It is hoped that by slowly varying K,  a 
profile with the corresponding number of short waves present could be determined. 
Also, a profile with a phase-speed parameter, ,u, approximately equal to the 
experimental value of 1.2124 is sought. Beginning with an initial value of ,u = 1.0 and 
a sinusoidal wavetrain with steepness 6 = 0.06727, a solution is determined. Then, K is 
decreased by 1/99th of the difference between the experimental value of K and the 
initial value of K (or -0.00008768), the convergent waveform is used as the initial 
waveform, and the convergent value of ,u is used as the initial guess. Upon determining 
a convergent solution, this process is repeated until K = 0.06275 is reached. At this 
point, starting values of (e, K )  = (0.06727,0.07143) and a sinusoidal wavetrain with an 
initial guess of ,u = 1.01 are used. The process is repeated in its entirety through an 
initial value of ,u = 2.0. In this manner, 10000 solutions are sought in order to 
approach K = 0.06275 from larger values of K and several values of p. No additional 
convergent solutions are found for (6, K) = (0.06727,0.06275). 

3. Non-intrusive surface-profile measurement system and laboratory 
facility 

Components of the non-intrusive surface-profile measuring system are a Spectra- 
Physics 164,2 W, Argon-Ion laser; attendant optics (a spherical and a cylindrical lens) 
which shape the beam into a laser sheet with its beam waist at the mean water level; 
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Spherical lens , (f.1. = 500 mm) 

Dielectric mirror 

Argon-ion 

Remainder 
of tank 

I 

laser 

Electrodynamic 
shaker with 

feedback 

Cylindrical lens 
(f.1. = 150 mm) Cylindrical lens 

Glass sidewall and bottom 

FIGURE 1. Schematic of non-contact measuring system. (a)  Elevation view along longitudinal 
section. (b) Elevation view along transverse section. 

a Kodak Ektapro high-speed, 8-bit video system with intensified imager with gating to 
1 ps and framing to 12 kHz; and attendant optics to magnify the vertical image by a 
factor of about 7 to 8 (two cylindrical, convex lenses). As this system is new and unique, 
a discussion of the components, optics, capabilities, and calibration is presented. A 
description of the remainder of the gravity-capillary wave laboratory follows. 

A schematic of the non-contact measurement system is shown in figure 1. Part (a), 
an elevation view of the longitudinal section of the wave tank, shows a schematic of 
the laser-sheet generating system. A cylindrical lens with a focal length of 6.35 mm is 
used to expand the beam in one direction, only. A spherical lens with a focal length of 
500 mm focuses the beam, after it is redirected by a dielectric mirror, to a narrow waist 
coincident with the quiescent water surface. The thickness of the laser sheet at the 
quiescent water/air interface is less than - 0.5 mm. Rhodamine-B dye is added to the 
water as the fluorescing agent for the chosen 514.5 nm wavelength light of the 
Argon-Ion laser. The rated power output of the laser is 2 W. The power output of the 
514.5 nm wavelength is approximately 0.6 W. 

Figure 1 (b), an elevation view of the transverse section of the wave tank, shows the 
physical set-up of the intensified imager and magnification and measurement optics. In 
figure 2, a ray-tracing diagram of the magnification/imaging optics is presented. 
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Cylindrical lens 
f2 I 

_ _ - -  - -  
I 
I 

4.21 Hz 5.26 Hz 
experiments: experiments: 

f l  150mm l o o m  
f2 75.6 mm 75.6 mm 

Theoretical length 1 336 mm 190 mm 
Theoretical length 2 338 mm 277 mm 
Actual length 1 339 mm 199 mm 
Actual length 2 360 mm 293 mm 
Camera lens setting 100 mm 80 mm 

FIGURE 2.  Ray-tracing diagram of the magnification/imaging optics. 

4.21 Hz 5.26 Hz System 
experiment experiment capabilities 

Vertical resolution (mm/pixel) 0.0446 0.0470 0.0050 
Horizontal resolution (mm/pixel) 0.349 0.351 0.039 

Actual vertical exaggeration 7.8 7.5 7.8 
Temporal resolution (11s) 50 50 1 

TABLE 1. Experimental resolutions and system capabilities 

Convex lenses with focal lengths and separation distances as shown in the figure are 
used. The configuration is chosen to maximize the useful area of an image with the 
constraint that an entire wavelength of the underlying gravity wave is visible. Also 
show in figure 2 are the theoretical distances required to give a vertical exaggeration 
(i.e. the ratio of the enlargement of the vertical dimension to that of the horizontal 
dimension) of 8.0 along with the actual lengths used. (For the vertical exaggeration, see 
table 1.) 

The imaging system is a Kodak Ektapro CID (charge-injection device) intensified 
imager and controller coupled to an Ektapro EM 1012 processor (i.e. a controller and 
recorder). It is capable of framing rates to 12 kHz (83.3 ps) and gating (shutter) rates 
as fast as 1 MHz (1 ps). A typical illumination level is 1.5 lux at a 1000 Hz framing rate 
with 1 ps gating and the maximum gain. At present, the unit is capable of recording 400 
frames (in RAM), expandable to 4800 frames. The image is composed of 239 
horizontal pixels by 192 vertical pixels. Pixels are undistorted in the two imaging 
dimensions. 

Once a set of 400 (or less) images is stored in RAM in the Ektapro 1012, it is 
downloaded to a Macintosh IIfx via a standard GPIB interface. Various programs 

20-2 
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written in LabVIEW control the type of images transferred and recorded. For example, 
a time series at a spatial point is obtained by stringing together a column of data from 
each full-frame of the temporal series of spatial images to compose a new image. This 
facilitates comparisons with other investigations which present temporal measurements 
at spatial locations. Sequential spatial series over time are displayed using various 
imaging software (see $4). From these images, phase speeds and vertical and horizontal 
coordinates of the surface profiles are gleaned. Thus, spatial evolution of the profiles 
is recorded. 

The vertical and horizontal resolutions are determined using precision Ronchi 
rulings with 4 cycles/mm and 2 cycles/mm, respectively. Using the known line 
spacings of the Ronchi rulings and the corresponding number of pixels obtained from 
the recorded images (using vertical and horizontal reticles available in the Ektapro), 
the resolutions are computed. In table 1, the resolutions of each experiment as well as 
the system capabilities are presented. A 100 mm focal-length lens and a 70-210 mm 
focal-length zoom lens is used in the 4.21 and 5.26 Hz experiments, respectively. The 
theoretical vertical exaggeration is 8.0. The vertical exaggeration realized is 7.8 and 7.5 
in the 4.21 and 5.26 Hz experiments, respectively. In the experiments reported, the 
vertical resolution is limited by the desire to capture entirely, in each image, the crest- 
to-trough region. 

An indication of the accuracy of the images is presented in figure 3 .  Spherical 
aberration is avoided as much as possible by using the central region of the cylindrical 
lenses. The calibration targets are placed in the same plane as the eventual location of 
the laser sheet. Its horizontal midline is located at the eventual location of the mean 
water level. Figure 3(a) shows a recorded image of the precision, horizontally ruled 
4 cycles/mm lines used to calculate vertical resolution and show distortion. The camera 
lens is set to 200 mm for these calibration images, only. The duty cycle is 0.5. Slight 
distortion is apparent. Figure 3 (b) shows a recorded image of the precision, vertically 
ruled, 2 cycles/mm lines used to calculate horizontal resolution and show distortion. 
A slight ‘ pin-cushion ’ effect is seen, particularly at this image’s extremities; however, 
owing to the location of the distortion (typically, our surface profiles do not extend into 
the corner regions), it is decided that geometric-distortion correction is unwarranted. 

An additional discussion is necessary at this junction; namely, in order to obtain 
spatial information over several of the long wavelengths (which is necessary for the 
dissipation calculation) without sacrificing resolution, the following procedure is used. 
After demonstrating that the wave field is temporally periodic (see figure 4 and the 
discussion in §4), as are all of the experiments discussed herein, the trigger which 
signals the imager to begin recording is coupled to a specific phase of the wave- 
generator signal. The phase is arbitrarily chosen as the zero up-crossing point of the 
wave-generator signal. (This is done simply by having the computer output two D/A 
signals, one a sinusoidal signal which is sent to the electrodynamic shaker, the other a 
square wave with TTL voltage which is sent to the Ektapro.) This ensures that at 
various spatial locations of the imager, the phases of all of the images are identical for 
a particular frame number. Thus, images with the same frame number can be placed 
adjacent to each other to form an image of the wave field as many gravity wavelengths 
long as desired. Vertical control is accomplished by positioning the imager so that the 
quiescent water level is at the same row-of-pixels location in each set-up. Horizontal 
control, which ensures that when the images are aligned there is neither overlap nor 
gap, is accomplished by including in the image a scale which is of sufficient length to 
span the desired measurement distance. In addition, redundant horizontal control is 

,, In figure 3, the vertical exaggeration is about 7.3. 
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FIGURE 3. Recorded 
Horizontal lines of a 
lines of a 2 cycle/mm 
cushion’ effect.) 

images of precision rulings used to determine accuracy and resolution. (a) 
4 cycle/mm precision Ronchi ruling used for vertical calibration. (b) Vertical 
precision Ronchi ruling used for horizontal calibration. (Note the slight ‘pin- 

afforded by precisely measuring the placement of the imager. Using this alignment 
technique, there is the possibility of f one pixel error in each direction. A final check 
on the entire procedure is that the transition between adjacent images is smooth. That 
this is, indeed, the case is shown in 54. 

The remaining laboratory facility consists of five subsystems: wave tank; wave 
maker and attendant electronics ; wave-maker signal generation and data acquisition 
system ; in-situ wave gauges and attendant electronics ; and water treatment system. 
(See Perlin & Ting 1992 for a discussion of the laboratory.) Glass walls, separated by 
71 em, form a 240 cm channel downstream of the wave maker. The water depth is 
approximately 14cm (deep water according to the linear wave theory for the 
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frequencies reported). The wave maker consists of an Unholtz-Dickie electrodynamic 
shaker Model 20 with a model TA100-20 amplifier; an aluminium right-angle-wedge 
wave paddle ; and a feedback displacement transducer, Kaman model KD2300-1OCU. 
The paddle dimensions are 5.03 cm vertical by 3.37 cm horizontal. Under static 
conditions, the wave paddle is immersed about 3.2 cm. The command signal (shaker 
digital-to-analog signal) is generated at 3000 Hz and data acquisition is accomplished 
using a Macintosh IIfx computer enhanced with National Instruments’ LabVIEW 
software and data acquisition hardware packages. Prior to digitization, output signal 
to the wave maker and feedback signal from the displacement transducer are filtered 
using two Krohn-Hite model 3342 analog filters with a cut-off frequency of 250 Hz. 
These signals are monitored to ensure that the wave-maker position as a function of 
time is essentially the same as the desired position. The water treatment system includes 
a 5 pm particulate pre-filter, a de-ionization tank, a carbon adsorption phase, and a 
0.2 pm particulate final filter. The wave tank and paddle are scrubbed before and after 
each use with ethyl alcohol. Static surface-tension measurements using a CSC-DuNoiiy 
tensiometer are made routinely and agree with accepted values for clean water at room 
temperature; however, it is well-known that the presence of surface-active agents does 
not necessarily cause a significant change in static, surface-tension measurements. 
Thus, the presence of these contaminants cannot be entirely ruled out. 

4. Results 
In this section, using time series of spatial images, it is shown that the parasitic 

capillary waves are quasi-stationary with respect to a coordinate system fixed to the 
gravity wave. That is, they are formed primarily on the front face of the crest and along 
the trough of the gravity wave and are modulated in amplitude and wavelength, but 
do not propagate with respect to the gravity wave. This suggests that the capillary 
waves and the gravity waves are resonating, in some sense, as there is an exchange of 
energy as a particular capillary wave amplitude varies in space as the wave system 
propagates. The capillaries emerge from the smooth surface along the gravity wave, 
rather than propagating to their eventual quasi-stationary location. 

Further, comparison is made to the theories of Longuet-Higgins and of Crapper and 
to the numerical solutions of Schwartz & Vanden-Broeck. Using the steepness of the 
experimental surface profile as input to the theories, the Longuet-Higgins theory 
substantially underpredicts the measured amplitudes of the capillaries as well as their 
wavelengths. The Crapper theory predicts the correct order of the measured capillary 
amplitudes on the forward face of the gravity wave, but overpredicts these amplitudes 
on the leeward face. Also, it underpredicts the measured wavelengths. Using the 
experimentally measured/computed values of (e, K ) ,  multiple numerical solutions are 
found (i.e. convergent solutions with different values of p) using the Schwartz & 
Vanden-Broeck formulation. These solutions are presented and discussed. In addition 
to disagreement between amplitudes and wavenumbers of the short waves, it is found 
that the phase speed of the wavetrain is underpredicted. That is, no numerical solutions 
are deterniined with a value of p which corresponds to the experiments. Processes 
neglected in the numerical formulation which are known to alter the phase speed do 
not account for the increase in phase speed, as they all cause a decrease. More likely 
is the possibility that the waveform with an appropriate p-value is simply not found, 
or/and the slight distortion in the images (see figure 3) is sufficient to alter the measured 
phase speed (accounting for an approximate 4 % difference). Finally, spatial values of 
potential and surface energies of the wave profiles are presented. The spatial series of 
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FIGURE 4. Time series of the 5.26 Hz wave profile showing about one-half wavelength of each image 
spaced 3 ms apart. The crest of the image in the foreground is located 0.5 wavelengths downstream 
of the wave maker. 

surface elevation spanning several wavelengths required for these calculations are 
produced using the previously discussed triggering scheme to properly synchronize the 
snapshots of a temporally periodic signal to the zero up-crossing phase of the wave 
maker signal. 

4.1. The 5.26 Hz experiments 
Throughout the discussion of the images, the image separation distances are referenced 
to the image centres and are chosen so that slightly more than a complete wavelength 
is visible in an image, and thus adjacent images overlap slightly. These distances are 
measured from the quiescent water-surface’s intersection with the wave paddle. In 
the figures, the wave is propagating from right to left with profiles shown at 3 ms 
intervals. The data are recorded at 1 ms intervals; however, showing all images 
recorded renders features more difficult to see. Time series, with all images present, are 
checked to ensure that no losses of significant features occur. 

In figure 4, a time series of spatial data is presented which extends over one-half of 
a temporal wave period. For clarity, each of the images in the sequence shows about 
one-half of the spatial image including the forward face of the gravity wave. These 
waveforms are recorded 7.1 cm downstream (to the image centre). Thus, the first wave 
crest is located about one-half of a linear-theory wavelength from the wave maker. 
Clearly, these waves are evolving; however, note that a line connecting the crests of the 
gravity wave and another line connecting the first troughs along the forward face of the 
gravity wave are parallel. Thus, the location of the first parasitic capillary crest is fixed 
relative to the gravity wave crest. The amplitude of this first capillary is being 
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FIGURE 5. As figure 4 but the crest of the image in the foreground is located 1.5 wavelengths 
downstream of the wave maker. 

modulated, as is its wavelength. Alternate views of the time series, as viewed from 
above, and comparisons of individual profiles show that the wavelengths are modulated 
about some mean wavelength. Therefore, it is mostly the amplitude modulation that 
causes the capillary wavelengths, especially the second capillary crests, to appear to be 
changing significantly. In the first profile, it is seen that three capillary crests are present 
on the half-profile, while only one-half wavelength downstream seven crests are seen. 
Note that these crests emerge from the gravity wave rather than propagating down the 
gravity wave’s forward face. (This is consistent with the notion of a stationary capillary 
wavetrain in the moving coordinate system; however, the close proximity to the wave 
maker and the absence of capillaries travelling down the forward face of the gravity 
wave suggest that the physical argument that the capillaries are due to increased 
pressure due to increased surface curvature (which necessitates a transient period 
during which the capillaries are establishing the stationary situation) is suspect or that 
the transience occurs extremely quickly.) It is possible that the wavetrain of capillaries 
exists but that its amplitudes are too small to be seen and that its presence is due to 
increased pressure in the gravity wave crest due to the local surface curvature. 
However, it is clear that their spatial growth occurs due to energy exchange with the 
underlying gravity wave (through a possible resonance) and not through the 
propagation of capillary waves relative to the gravity wave. 

Figure 5 is a time series of spatial profiles with the centre of the imaging system 
located two wavelengths downstream. The other parameters of this sequence are the 
same as those of figure 4. In figure 5,  the most evident change in the surface profile is 
that the first large capillary crest is initially small, but it is increasing in amplitude and 
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FIGURE 6. As figure 4 but the crest of the image in the foreground is located 2.5 wavelengths 
downstream of the wave maker. 

reappearing in the later images. (In fact, in figure 6 which is three wavelengths 
downstream, it is seen that the first crest continues to recover and increase in 
amplitude.) Likewise, the second capillary wave is evolving. It is decreasing in 
amplitude and is nearly non-existent in the last image shown in figure 5.  The cyclical 
process of decay and growth is similar to that which occurs in resonance phenomena. 
Two additional features seen in figure 5 are that the capillaries in and near the gravity- 
wave trough are quasi-stationary in the gravity-wave coordinate system and that these 
waves are growing and decaying, too. Also, it is seen that the average slope of the front 
face is decreased. Individual images of the entire wavelength show that the wave is 
more symmetric at larger distances from the wake maker. (For example, see figure 8.) 

In figure 6, a time series is presented with the imaging system located three 
wavelengths downstream; otherwise, the set-up is the same as in figures 4 and 5. Now, 
the surface-wave profile is shaped beautifully and it is clear that the waves are 
stationary in the moving coordinate system. There is very little modulation of the 
wavelengths of the capillaries. The first two capillaries are decaying in space while the 
higher frequency capillaries appear to be stationary in amplitude and wavelength. Two 
additional time series are recorded four and five wavelengths downstream but are not 
presented. (Two individual frames from the last two stations’ time series along with 
three other frames from the first three time series are presented in figure 9.) The most 
significant feature of these last two time series (not presented) is the systematic 
extinction of the capillaries, presumably by viscous effects. 

In order to compare the experimental profiles with the theoretical solution of 
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Longuet-Higgins, an image is chosen arbitrarily from the imaging station located three 
wavelengths downstream (i.e. from the time series shown in figure 6). The first frame 
of this time series is chosen because the surface profile is quasi-stationary and nearly 
symmetric. Thus, the comparison between theory and experiment should be favourable. 
To calculate the Longuet-Higgins’ solution, the wavelength and wave amplitude of the 
measure surface profile is used. As the amplitude of the experimental wavetrain is 
changing slowly in space, an average of the two sequential amplitudes in the image is 
used to calculate the amplitude to which the theory is matched. In the computations, 
the values of A and I are varied until the computed underlying gravity-wave wavelength 
and amplitude are identical with the measured wavelength and amplitude. For clarity 
in the comparisons of theory to measurements, the surface profile rather than the 
image is presented. To obtain this profile from the image, an edge-detection routine is 
implemented using the following spatial masks to compute the gradients in the x- and 
y-directions, respectively (see Gonzalez & Wintz 1987, p. 334): 

-1 -2 -1 -1 0 1 
0 0 0  -2 0 2 
1 2 1  -1 0 1 .  

Next, proceeding from the top of an image, column by column, the first pixel with 
gradient greater than 10 is chosen as an approximate location of the surface. Then, 
including 10 pixels above and below this pixel, the surface location is taken to be the 
pixel with the maximum gradient. (This ad-hoc technique, determined to be the best 
amongst many possibilities tested, is used to produce the measured profiles presented 
in figures 7 and 11. In each case, the surface profile determined in this manner is 
compared to the image to ensure duplication.) It is necessary here to discuss the 
subsurface portion of the image. Laser light entering the free surface is refracted and 
thus causes bright and dark regions to form beneath the surface. This is seen clearly 
in the front-most image in figure 4. Herein, no information from the subsurface portion 
of the images is used. (Figure 8 shows the subsurface more clearly.) The numeric search 
procedure used to determine the location of the surface (as shown in figures 7 and 1 l), 
and thus determine the waveform, treats each column of the image individually and 
searches from the top of the column downward until the maximum jump in light 
intensity is determined, thus locating the surface. Reiterating, the subsurface light- 
intensity gradients (which are also quite apparent in figure 10) do not influence the 
algorithm’s location of the free surface. 

As is seen in figures 7 (a)  and 7 (b) where, for comparison, the vertical exaggeration 
is decreased by a factor of two, the measured and two of Longuet-Higgins’ theoretical 
profiles are compared. The wave steepness and phase speed of the experimental 
wavetrain are 0.21 and 35.99 cm/s, respectively. (Typically, a wavetrain with this 
steepness is associated with weakly nonlinear theory. Experiments not reported show 
that the steepness of the wavetrain increases more slowly with increasing wave-maker 
stroke once the capillaries appear.) The theoretical profile with A = 0.59 and I = 1.21 
predicts a smooth nonlinear, gravity waveform. The amplitudes of the parasitic 
capillaries are severely underpredicted. To determine the frequency of the theoretical 
parasitic waves, the value of A is increased until the amplitude of the capillary waves 

FIGURE 7. Comparison of (a) the measured 5.26Hz profile (the surface profile is located 2-3 
wavelengths downstream) with (b) the theory of Longuet-Higgins (bold line A = 0.59, thin line A = 
0.90); (c) the theory of Crapper; and (d) ,  (e), and (f) three numerical solutions determined using the 
Schwartz & Vanden-Broeck scheme - convergent p-values of 1.1 165 (the ‘natural’ profile), 1.1204, 
and 1.1086, respectively. 
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in the theory are comparable to the measured ones. This profile is superimposed on 
figure 7(b). Clearly, once commensurate amplitudes are produced by increasing A to 
0.9, the wavelengths of the theoretical capillaries are seen to be smaller than those 
measured experimentally. 

The theoretical solution of Crapper, which uses the same solution for the underlying 
gravity wave as Longuet-Higgins but includes a different treatment of the capillary 
waves, is shown in figure 7(c). In order to compare to the crest-to-crest span of the 
gravity wave profile, as is done with the Longuet-Higgins theory, the theory of Crapper 
is computed as follows. Both theories are periodic; however, neither theory predicts an 
integral number of short waves riding on the gravity wave. Therefore, if calculations 
begin at a crest (trough), there is a discontinuity at the next crest (trough). Therefore, 
to obtain a continuous profile in the trough required for a crest-to-crest comparison, 
the Crapper theory, which begins in a trough, is calculated forward to the next crest 
and backward to the previous crest. This surface profile is shown in figure 7(c). It is 
seen that Crapper’s theory predicts the same order-of-magnitude capillary-wave 
amplitudes on the forward face of the gravity wave as are measured experimentally; 
however, the theoretical amplitudes of the waves on the leeward face of the capillary 
wave are larger than the measured amplitudes. The wavelengths of the theoretical 
capillaries are smaller than those measured in the experiments. That is, both theories 
predict the capillary wavelengths to be less than those measured experimentally. 

The three numerical solutions found using the boundary-integral formulation are 
presented in figures 7(d), 7(e), and 7 0 .  These three solutions have p-values of 1.1 165, 
1.1204, and 1.1086, respectively. The steepness and surface-tension parameters, 
(e, K )  = (0.06727,0.06275), are those of the measured profile presented in figure 7(a). 
Although barely visible, about eight short waves are present on a half (crest-to-trough) 
wavelength shown in figure 7 (d). Clearly, the short-wave amplitudes are overall much 
smaller than those seen in the physical experiments. This is the ‘naturally’ occurring 
waveform which, in the straightforward method described in $2, occurs in almost 96 Yo 
of the solutions. The solution presented in figure 7(e) occurs in about 3% of the 
solutions and, in the vernacular of Schwartz & Vanden-Broeck, is a ‘type 1 ’ (capillary- 
type) wave as it has a dimple on the crest. On the other hand, the waveform presented 
in figure 7(f) is a ‘type 2’ (gravity-type) wave similar to the waveform shown in figure 
10 of their publication. It occurs in about 1 % of the straightforward calculations. The 
profiles shown in figures 7(e) and 7 ( f )  have about 8.5 short waves present in a half 
(crest-to-trough) wavelength. Thus, these two solutions represent waveforms with an 
increasing number of short waves present as compared to the naturally occurring 
profile rather than a decreasing number as is seen in the experiments. That is, all 
numerically determined solutions contain short waves with larger wavenumbers than 
those measured experimentally. Figures 7(e) and 7 ( f )  show short waves with 
amplitudes of the correct order of magnitude. No additional solutions are determined 
using the bootstrap method as described in $2. A surface profile that is similar in the 
number of short waves to that shown in figure 7(a) is not found. 

The measured phase-speed parameter, ,u = 1.2124, gives an increase in phase speed 
of 8.6, 8.2, and 9.4 % above the predicted values, respectively. Including additional 
phenomena which are neglected in the Schwartz & Vanden-Broeck formulation and 
are known to affect phase speed (e.g. viscosity, contamination, etc.) cause a decrease 
rather than an increase in phase speed. One possible explanation is that the numerical 
solution corresponding to the experiments is simply not found. A second possibility is 
that the slight distortion in the images (see figure 3 )  is sufficient to cause an error in c 
of approximately 4 YO. The numerical formulation is for a stationary, periodic 
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FIGURE 8. Two sets of images recorded 190ms apart (5.26 Hz), (a) 7.1 cm and (b)  20.7 cm 
downstream. Clearly, the temporal periodicity of the wave fields is shown. The distances are measured 
from the wave maker to the image centres. 

waveform in the moving coordinate system and thus there is no possibility of it 
predicting the evolution seen in the downstream direction in the experiments. A time- 
marching scheme such as developed by Huh (1991) is the minimum formulation 
required. As it is unknown whether the resonance-like processes seen in the physical 
experiments are related to viscous effects or not, it is unclear whether a time- or space- 
marching formulation of the inviscid problem can predict the profiles produced in the 
experiments, even neglecting the dissipation. 

To facilitate the reconstruction of a wave field over several wavelengths of the 
gravity wave, a triggering technique is used. In 53, the triggering scheme is discussed. 
For the triggering technique to provide meaningful results, the wave field must be 
temporally periodic. Figure 8 shows two sets of images from the 5.26 Hz experiments 
recorded one temporal wave period (i.e. 190 frames apart at 1000 Hz recording rate) 
apart. Two spatial locations, 7.1 and 20.7 cm downstream of the wave maker, are 
shown. It is clear from these two sets of images that both the underlying gravity wave 
and the parasitic capillaries are temporally periodic regardless of the proximity of the 
measurement location to the wave maker. Thus, it is concluded that triggering the 
imager on the zero up-crossing of the wave-maker signal, at various overlapping 
imager locations, allows one to construct a mosaic of the surface profile. 

A mosaic, composite image is presented in figure 9. It is produced using the zeroth 
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FIGURE 9. An 'extended' spatial series of the 5.26 Hz experiments showing 5 wavelengths of the 
wave field beginning 0.5 wavelengths downstream of the wave maker. 

First Second Third Fourth Fifth 
wavelength wavelength wavelength wavelength wavelength 

E n m  1.153 0.815 0.841 0.916 0.831 

TABLE 2. Computed values for non-dimensionalized average potential energy and surface energy 
for wavelengths shown in figure 9. 

- 

'En o n 1.645 1.128 1.119 0.987 0.880 

frames from each of the five imager positions of the 5.26 Hz experiments. At the top 
of each image, the scale used to provide redundant control of the horizontal placement 
of the images is visible. Wave prapagation is from right to left. The first three 
downstream images correspond to the partial profiles show in the immediate 
foreground of figures 4, 5, and 6, respectively. In those figures, the dark portion of the 
image has been removed. In figure 9, the actual images are used to form the composite 
image. Using the composite image shown in figure 9, coordinates of the surface profile 
are obtained using the aforementioned surface location algorithm. From these data, 
the average potential energy per unit wavelength per unit crest width due to the 
presence of the wave, PE, and the average surface energy per unit wavelength per unit 
crest width due to the presence of the wave, SE, are calculated as a function of 
downstream position, x. The computations use the crest-to-crest gravity wavelength, 
L (defined as the distance between the maximum surface elevations), as the averaging 
distance. The equations used to calculate these quantities are 

These quantities are non-dimensionalized by their corresponding linear-wave-theory 
values calculated for the same wave amplitude and length as measured one wavelength 
downstream and are denoted by m,,, and SE,,,. Table 2 presents the computed 
values for the five wavelengths shown in figure 9. In figure 9, it is seen that the parasitic 
capillary waves are generally decreasing in amplitude in the downstream direction ; 
however, they are larger in the trough of the fifth image than in the trough of the fourth 
image. Apparently, energy exchange is still occurring. The data in table 2 show a 
decrease in surface energy in the downstream direction. This is in agreement with the 
qualitative conclusion. The potential energy is seen to be varying irregularly in the 
downstream direction. No explanation for this behaviour is known. 

4.2. The 4.21 Hz experiments 
Experiments are presented for steep gravity waves generated at 4.21 Hz. Many of the 
features exhibited by the 4.21 Hz wavetrain are similar to those of the 5.26 Hz 
wavetrain and are not presented. It is shown that the lower-frequency, steep gravity 
wave generates capillaries with higher wavenumbers. This is consistent with the theory 
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FIGURE 10. Time series of the 4.21 Hz wave profile showing about one-half wavelength of each image 
spaced 3 ms apart. The crest of the image in the foreground is located 1.5 wavelengths downstream 
of the wave maker. 

and according to the theory is because the pressure disturbance due to the large crest 
curvature is travelling faster in the lower-frequency gravity wave. It is shown, too, that 
the capillary waves decay more rapidly in the 4.21 Hz experiments than in the 5.26 Hz 
experiments. This is consistent with the theory for free, gravity-capillary or capillary 
waves. It is shown, too, that the natural profile calculated numerically using the 
Schwartz & Vanden-Broeck formulation predicts amplitudes and wavenumbers of the 
short waves which are essentially not visible. 

In figure 10, a time series of the crest-to-trough region of the 4.21 Hz gravity wave 
is shown. The centre of the imaging system is positioned approximately 1.5 linear 
wavelengths downstream and the portion of the series shown extends for about one- 
half wavelength. It is seen that the capillaries’ positions are stationary features along 
the gravity wave (i.e. lines connecting the same phase on corresponding capillaries are 
at the same angle as a line connecting the crests of the gravity wave), with the 
uppermost (forward face of the crest region) capillaries’ amplitudes decaying and the 
lowermost (trough region) capillaries’ amplitudes modulating over time. As predicted 
by the theory, the wavelengths of the 4.21 Hz parasitic capillaries are less than those 
of the 5.26 Hz wavetrains. Presumably, this is due to the increase in phase speed of the 
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lower-frequency gravity wave. Measured values are 43.03 and 35.99 cm/s, respectively. 
The phase speeds vary slightly in space. About 13 capillaries are present on the portion 
of the wave profile shown. In general, the wave profiles are very similar to those of the 
5.26 Hz experiments. 

The first frame, chosen arbitrarily from a time series recorded approximately two 
wavelengths downstream, is shown in figure 11 (a)  with the theory of Longuet-Higgins 
presented in figure 11 (b). The experimental wavetrain is determined to have a wave 
steepness of 0.24 and a phase speed of 43.03 cm/s, where the amplitude is calculated 
by halving the average of the two crest-to-trough distances visible in the image. Again, 
the theoretical profile is obtained by matching the wave length and amplitude of the 
experiments to those of the theory (by altering A and 0. In figure ll(b), the lower- 
steepness theoretical profile is shown for A = 0.66 and 1 = 1.158. Then, by increasing 
A until the capillaries’ amplitudes are of the correct order of magnitude, a second 
theoretical profile is determined. A value of A of 0.9 is used. It is seen that the theory 
underpredicts the amplitudes and wavelengths of the parasitic waves if the measured 
wave steepness is used in the theory. Using a much steeper underlying gravity-wave 
profile predicts a reasonable value for the amplitude of the capillaries as compared to 
experiments, but the wavenumbers are still overpredicted. 

Crapper’s theoretical solution for the 4.21 Hz experiment is shown in figure 11 (c). 
Consistent with the 5.26 Hz experiments, the theory predicts larger capillaries on the 
leeward face of the crest than are seen in the experiments. Also, the capillary 
wavelengths predicted by the theory are shorter than those that are recorded in the 
experiments. 

In figure 11 (d), the ‘natural’ profile for the 4.21 Hz case is presented. Clearly, the 
short-wave amplitudes are much smaller than those realized in the physical 
experiments, so small in fact that a comparison between predicted and measured 
numbers is not possible. The convergent value of p, the phase-speed parameter, is 
1.0923 a determined from the numerical solution, while the measured value is 1.1603. 
As in the 5.26 Hz experiments, the waveform is travelling at a phase speed greater than 
that predicted by the numerics. There is an increase in phase speed of about 6.2 % in 
the experiment as compared to the numerics. A detailed search for additional profiles 
is not conducted. 

As with the higher-frequency experiments, the 4.2 1 Hz waves exhibit temporal 
periodicity (at least when their steepness is restricted). Thus, using the triggering 
scheme, an extended composite profile is possible. In order to magnify the parasitic 
capillaries sufficiently, a vertical exaggeration of 7.8 is used (see table 1). This precludes 
recording a complete wavelength of the 4.21 Hz profile. Thus, five set-ups yield a 
composite profile which extends about 2.5 wavelengths. It is presented in figure 12. In 
general, the parasitic capillary waves are decaying with distance. The forward face of 
the wave profile 2-2.5 wavelengths downstream shows remnants of the parasitic 
capillaries through the focusing of the laser sheet beneath the water surface ; however, 
the water surface is nearly smooth. This general decrease in surface energy is consistent 
with that seen in the 5.26 Hz experiments ; however the lower-frequency gravity 
wavetrain experiences a more rapid decrease in the parasitic capillaries, which are 
almost non-existent by 2.5 wavelengths downstream. 

FIGURE 11. Comparison of (a) the measured 4.21 Hz profile (the surface profile is located about 
1.5-2.25 wavelengths downstream) with (b) the theory of Longuet-Higgins (bold line A = 0.66, thin 
line A = 0.90); (c) the theory of Crapper; and ( d )  the numerical solution determined using 
Schwartz & Vanden-Broeck’s scheme - a convergent ,u-value of 1.0923 (the ‘natural’ profile). 
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FIGURE 12. An ‘extended’ spatial series of the 4.21 Hz experiments showing about 2.5 
wavelengths of the wave field beginning one wavelength downstream of the wave maker. 

5 .  Conclusions 
A new instrument and non-intrusive measurement technique is discussed. An 

intensified, high-speed video system is used to image surface profiles through 
magnifying optics. Owing to the disparate horizontal and vertical lengthscales inherent 
in water waves, a vertical exaggeration of about 8 is desirable for spatial measurement 
and is achieved through the use of cylindrical lenses. A longitudinal plane of fluid 
which includes the surface profile is illuminated using a laser sheet and a fluorescing 
dye. It is shown that this instrument is extremely accurate, with sufficient resolution to 
capture and quantify the capillary waves generated by steep, high-frequency gravity 
waves. 

Several important similarities and differences are seen between theoretical and 
measured waveforms which evolve from large, single-frequency sinusoidal oscillations 
of a paddle which sits astride a uniform-depth channel. As predicted by theory, the 
wavelengths and amplitudes of the parasitic waves are decreasing in the downstream 
direction as measured in a coordinate system fixed to the crest of the gravity wave. The 
amplitude and wavelength of the capillaries are modulated in space, but they do not 
propagate with respect to the underlying wave. Thus, the parasitic capillaries are quasi- 
stationary with respect to a coordinate system fixed to the gravity wave. 

Based on the steepness and phase speed of the experimental surface profile, it is seen 
that the Longuet-Higgins theory underpredicts the amplitude and lengths of the 
capillaries as measured in the experiments. Along the forward face of the surface 
profile, based on the steepness of the experimental wavetrain, Crapper’s theory predicts 
the short-wave amplitudes reasonably well; however, it overpredicts the amplitudes 
along the leeward face. Crapper’s theory underpredicts the lengths of the measured 
capillaries. 

The ‘natural ’ wave profiles predicted by the Schwartz & Vanden-Broeck formulation 
have short-wave amplitudes significantly smaller than the measured amplitudes, and in 
the case of the 5.26 Hz wavetrains, have wavenumbers larger than those measured. In 
the 4.21 Hz wavetrain, the numerically generated, natural amplitudes are so small that 
a comparison of wavenumbers is not possible. Three solutions, determined using two 
techniques, a straightforward method and a ‘bootstrapping’ method, are found in the 
case of the 5.26 Hz wavetrains. Aside from the natural profile, the other two solutions 
have wavenumbers larger than those measured experimentally; however, the 
amplitudes of the short waves are the correct order of magnitude. Recall that the 
experimental waveform presented in figure 7 is chosen arbitrarily from a time series of 
profiles, but its general features are similar to the other profiles. It is possible that the 
solution corresponding to the physical experiments simply is not found. As there is no 
known method for determining the number of solutions to the numerical formulation, 
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it is not known whether or not other solutions exist. Also, it is unknown whether the 
resonance-like processes seen in the physical experiments are related to viscous effects 
or not, and so it is unclear whether a time- or space-marching formulation of the 
inviscid problem can predict the profiles produced in the experiments, even neglecting 
the dissipation. 

Estimates of the average surface energy due to the presence of the waves per unit 
wavelength per unit crest width show a decrease in the downstream direction. 
Estimates of the average potential energy per unit wavelength per unit crest width are 
seen to fluctuate downstream, partially due to the change in the waveform toward 
increased symmetry. 

According to theory, steep, lower-frequency (4.21 Hz) gravity waves generate 
higher-wavenumber parasitic capillary waves than do steep, higher-frequency (5.26 Hz) 
gravity waves. In both cases, the crest curvature is assumed to increase the pressure 
locally; however, the lower-frequency gravity waves travel at higher phase speeds, thus 
generating larger-wavenumber parasitic capillaries. The experiments verify that higher 
wavenumbers are generated by the lower-frequency gravity wave, and, in addition, 
show that these shorter parasitic waves are dissipated more quickly than their 5.26 Hz 
counterparts. The parasitic capillaries generated by the 4.21 Hz gravity wave are barely 
visible about 2.5 wavelengths downstream while those generated by the 5.26 Hz gravity 
wave are seen five wavelengths downstream. Thus, the rapidity with which the higher- 
wavenumber capillaries are extinguished is in qualitative agreement with the viscous 
dissipation model for free, linear waves. 

In future experiments, particle image velocimetry, if successful close to the surface, 
and if sufficient resolution is achieved, would facilitate the calculation of the average 
kinetic energy as a function of downstream location. Then, conclusions regarding 
energy dissipation are possible. A geometric-distortion correction could be im- 
plemented. To test whether the asymmetry seen in the experiments is an inviscid or 
viscous phenomenon, numerical calculations with the symmetry requirement removed 
are desirable, as are viscous calculations. Time- or space-marching calculations are 
required to predict the resonance-like behaviour seen in the physical experiments. 
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